A comparative review of approaches to prevent premature convergence in GA

نویسندگان

  • Hari Mohan Pandey
  • Ankit Chaudhary
  • Deepti Mehrotra
چکیده

This paper surveys strategies applied to avoid premature convergence in Genetic Algorithms (GAs). Genetic Algorithm belongs to the set of nature inspired algorithms. The applications of GA cover wide domains such as optimization, pattern recognition, learning, scheduling, economics, bioinformatics, etc. Fitness function is the measure of GA, distributed randomly in the population. Typically, the particular value for each gene start dominating as the search evolves. During the evolutionary search, fitness decreases as the population converges, this leads to the problems of the premature convergence and slow finishing. In this paper, a detailed and comprehensive survey of different approaches implemented to prevent premature convergence with their strengths and weaknesses is presented. This paper also discusses the details about GA, factors affecting the performance during the search for global optima and brief details about the theoretical framework of Genetic algorithm. The surveyed research is organized chema theory tatistical mechanics in a systematic order. A detailed summary and analysis of reviewed literature are given for the quick review. A comparison of reviewed literature has been made based on different parameters. The underlying motivation for this paper is to identify methods that allow the development of new strategies to prevent premature convergence and the effective utilization of genetic algorithms in the different area of research. © 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm

The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...

متن کامل

Design of Digital FIR Filter Using Hybrid SIMBO-GA Technique

The hybrid technique of Swine Influenza Model Based Optimization (SIMBO) and Genetic Algorithm (GA) for designing linear phase FIR low pass filter has been presented in this paper. The major difficulties using SIMBO algorithm in designing filter was premature convergence and unacceptable computational cost. To address this problem, a hybrid SIMBO-GA is proposed where GA is used to help SIMBO es...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

Combined Heuristic Technique for Optimization of Bloom Filter in Spam Filtering

Problem statement: Spam is an irrelevant or inappropriate message sent on the internet to a large number of newsgroups or users. A spam word is a list of well-known words that often appear in spam mails. Bloom Filter (BF) is used for identification of spam word. Approach: BF is a simple but powerful data structure that can check membership to a static set. The trade-off to use BF is a certain c...

متن کامل

The Development of Information Guided Evolution Algorithm for Global Optimization

Evolutionary algorithm (EA) has become popular in global optimization with applications widely used in many industrial areas. However, there exists probable premature convergence problem when rugged contour situation is encountered. As to the original genetic algorithm (GA), no matter single population or multi-population cases, the ways to prevent the problem of probable premature convergence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014